Lab pare-feu et VPN IPSEC
Ce Lab est un complément VPN IPSEC site-à-site au Lab Cisco IOS Zone Based Firewall.
Ce Lab est un complément VPN IPSEC site-à-site au Lab Cisco IOS Zone Based Firewall.
Voici un lab de configuration en Cisco IOS d’une topologie IPSEC VPN site-à-site, pre-shared, avec NAT overload entre deux réseaux privés. Il est démonstratif d’une configuration à l’aide de crypto-map.
Cisco Switched Port Analyzer SPAN est une solution Cisco Systems qui permet de monter un port miroir sur un commutateur afin d’y transférer du trafic à surveiller.
Lab Final ICND 2 CCNA
Lorem ipsum lorem ipsum lorem ipsum lorem ipsum lorem ipsum lorem ipsum lorem ipsum lorem ipsum lorem ipsum lorem ipsum lorem ipsum.
Examens CCNA 200-301
On trouvera dans ce document une synthèse des méthodes de dépannage en Cisco IOS associées à la matière ICND1.
On trouvera dans ce document une synthèse des méthodes de dépannage sur les hôtes terminaux qui consiste à éprouver les trois paramètres d’une connectivité TCP/IP bien vécue : une adresse IP et son masque, une passerelle par défaut et un serveur de résolution de noms.
Ce Lab vous propose de monter un tunnel VPN GRE non sécurisé entre deux sites et de le démonter, ensuite on proposera de monter un tunnel VPN IPSEC en ESP mode tunnel, dans un troisième temps, on rétablira les interfaces GRE et on utilisera la configuration ESP en mode transport. Cette configuration chiffre le trafic GRE entre les deux sites et autorise l’activation d’un protocole de routage comme OSPF. Cette configuration ne serait pas complète sans la configuration du pa...
IPSEC est un standard ouvert de l’IETF pour sécuriser les réseaux IP. Il protège et authentifie les paquets IP d’un origine à une destination grâce à des services de sécurité cryptographiques et à un ensemble de protocoles de transport. IPSEC est un plutôt un Framework, un cadre évolutif qui ne définit pas des protocoles spécifiques mais des possibilités de sécuriser le transport des données à travers les réseaux IPv4 et IPv6 sous-entendus publics.
Dans cet exercice on propose de mettre en oeuvre la fonctionnalité pare-feu de l’IOS Cisoc (ZBF Zone Based Firewall). Dans une premier exercice, on démontrera en quoi le NAT n’est pas une sécurité. Les exercices suivants établissent les politiques de filtrage entre les zones LAN, DMZ, Internet et le pare-feu lui-même.
Un pare-feu (firewall) protège des tentatives de connexion directe venant d’un réseau comme Internet. Par contre, il laisse entrer le retour légitime du trafic initié d’une zone de confiance comme un LAN. Il tient compte de l’état des sessions de couche 4 établies (TCP, UDP, ICMP, etc.). On parle alors de pare-feu à état.
Lab gestion d’infrastructure
Gestion de message de logs SYSLOG en Cisco IOS.
Ce chapitre porte sur la synchronisation temporelle NTP en Cisco IOS. Dans un premier temps, on exposera brièvement le principe de fonctionnement du protocole NTP. Ensuite, on apprendra comment activer et vérifier NTP en Cisco IOS.
CDP Cisco Discovery Protocol (propriétaire) et LLDP Link Layer Discovery Protocol (standardisé IEEE 802.1ab) sont des protocoles de couche (L2) servant à l’identification, au diagnostic, à la surveillance, à la gestion et à la configuration des périphériques à partir de cette couche.
Ce chapitre a pour objectif de présenter la manipulation de fichiers sous Cisco IOS : Vérification MD5, le transfert via TFTP, FTP et SCP (SSH).
Ce chapitre traite du sujet de la configuration et de la gestion des consoles locales et distantes (Telnet et SSH) des périphériques Cisco ainsi que de leur sécurisation.
Authentification des informations de routage
Les routeurs Cisco supportent des ACLs (RACLs) standards, étendues et nommées pour filtrer du trafic IPv4 et des ACLs étendues nommées pour filtrer du trafic IPv6. Les commutateurs Cisco de couche 2 (L2) supportent les listes d’accès appliquées aussi bien sur des ports L2 (PACLs) que sur les VLANs (VACLs).
Ce chapitre est une introduction pratique à la sécurité du protocole IPv6.
Voici un exercice de lab pratique sur la sécurité dans le LAN.
Infrastructures LAN : Vulnérabilités, cibles, menaces, attaques et surtout contre-mesures. Quelle sont ces vulnérabilités que l’on peut rencontrer dans un LAN ? Quels sont les cibles et les attaques potentielles ? Et, enfin, quelles sont les bonnes pratiques et les remèdes à appliquer ?
Pourquoi garder la couche 2 (L2) entre les couches Distribution et Access si les commutateurs de la couche Access supportent le routage statique ou dynamique ? Cet exercice propose de passer la topologie switchblock totalement en couche 3 (L3) en désactivant switchport sur les interfaces et en activant le routage dynamique IPv4 et IPv6.
Cet exercice consiste à se passer de la boucle Spanning-tree par une liaison IP dans la couche Distribution à des fins de performance, ce qui nécessitera de ne pas étaler les Vlans dans la couche Access. La couche Distribution offre toujours un service de passerelle et DHCP redondants.
Cet exercice de laboratoire ajoute un protocole de redondance du premier comme HSRP entre la couche Access et la couche Distribution d’une topologie de type Campus LAN. La charge du trafic des VLANs est répartie grâce à Rapid Spanning-Tree.
L’objectif de cet exercice de laboratoire sur le protocole Rapid Spanning-Tree est d’éprouver ses capacités de répartition de la charge des VLANs sur des liaisons Trunk alternatives tout en assurant sa mission de reprise suite à la rupture d’une liaison entre un commutateur de couche Access et un commutateur de couche Distribution. Nous verrons que la solution comprend encore un point unique de rupture avec la passerelle par défaut des VLANs dans la couche Distribution.
HSRP, Host Standby Router Protocol est un protocole de redondance du premier saut (FHRP, First Hop redundancy Protocols), propriétaire Cisco. De multiples passerelles de réseau local s’entendent sur une adresse IP virtuelle et élisent un routeur “Active” qui prend en charge le trafic comme passerelle par défaut en répondant au trafic ARP. Un autre routeur reste en état “Standby” alors que tous les autres sont en état “Listen”. HSRP converge endéans les dix secondes par déf...
Dans ce chapitre introductif de conception des réseaux locaux, on identifiera les différents modèles de conception dans lesquels interviennent les solutions de disponibilité dans le réseau local (LAN) telles que Etherchannel, Rapid Spanning-Tree, HSRP et le routage IP. Le propos développé ici invite au déploiement de ces topologies dans des exercices de laboratoires. On ne manquera enfin de rappeler le principe de la sécurité par conception.
EtherChannel (IEEE 802.3ad) est une technologie d’agrégation de liens qui permet d’assembler plusieurs liens physiques Ethernet identiques en un seul lien logique. On l’appelle aussi bonding, LAG, etherchannel, ou encore portchannel. Le but est d’augmenter la vitesse et la tolérance aux pannes entre les commutateurs, les routeurs et les serveurs. Elle permet de simplifier une topologie Spanning-Tree en diminuant le nombre de liens.
Au cours de ce lab, vous êtes invité à configurer les commutateurs root principal et secondaire, à examiner la convergence PVST+, à configurer le protocole Rapid PVST+ et à comparer sa convergence par rapport à PVST+. Aussi, vous êtes invité à configurer des ports “Edge” pour passer directement à un état “Forwarding” à l’aide de “PortFast” et empêcher ces ports de retransférer des BDPUs à l’aide de la protection “BDPU Guard”.
Spanning-Tree est un protocole L2 formalisé IEEE 802.1D qui permet de garder une topologie physique redondante tout en créant un chemin logique unique. Spanning-Tree envoie régulièrement des annonces (BPDU) pour élire un commutateur principal (root). En fonction de cette information, les commutateurs coupent des ports et une topologie de transfert à chemin unique converge (de quelques secondes à 50 secondes selon les versions).
On vous demande de monter un prototype pour éprouver votre expérience des VLANs et du routage inter-VLANs avec du matériel Cisco. Vous disposez de deux commutateurs d’accès L2 C2960 et d’un routeur C2911 ou d’un commutateur L3 C3560.
Ce chapitre a pour objectif d’exposer les commandes de configuration des VLANs en Cisco IOS, la configuration du protocole DTP (Dynamic Trunking Protocol) et VTP (VLAN Trunking Protocol) ainsi que les bonnes pratiques associées.
Ce chapitre est une présentation de la technologie VLAN, du concept de “Trunk” VLAN selon Cisco Systems, du routage “inter-VLANs”, de l’implémentation de la technologie en général et de la nomenclature Cisco en particulier.
Les principes de conception des réseaux LAN (LAN Design) sont popularisés par Cisco Systems dans un modèle de conception hiérarchique et modulaire à trois couches : Access, Distribution et Core. Les catalogues des fabricants utilisent cette nomenclature fonctionnelle pour guider les clients dans leurs choix. On ne manquera d’observer les études de marché qualitatives (Gartner) et quantitatives pour constater le leadership de Cisco Systems.
Ce chapitre est consacré au rôle révolutionnaire des commutateurs Ethernet dans nos infrastructures de réseaux locaux en terme d’optimisation des tâches de transferts. On expliquera ici comment ils prennent leur décision de transfert sur base des adresses MAC apprises. On exposera aussi succinctement les différents protocoles IEEE 802.1 auxquelles ils participent. On sera enfin attentif aux implémentations propriétaires et aux comportements par défaut qui caractérisent com...
La technologie Ethernet dispose de ses propres caractéristiques en matière de câblage, de normes, de formats de trame et de méthode d’accès. Aussi avec PoE, Ethernet est capable d’alimenter les périphériques. Enfin, on fournira dans ce chapitre la méthode de diagnostic de couche 1 (L1) concernant les câbles utilisés en technologie Ethernet avec un périphérique Cisco.
EIGRP le protocole de routage à vecteur avancé propriétaire Cisco. Il est aisé à configurer, il est robuste et performant. On trouvera ici un lab de configuration de EIGRP en IPv4 et en IPv6 dans une topologie maillée à trois routeurs.
Le protocole de routage dynamique propriétaire EIGRP est la solution préférée dans les infrastructures Cisco Systems. EIGRP est un protocole de routage dynamique intérieur hautement fonctionnel. Il converge très rapidement et il est multi-protocoles IPv4/IPv6. Il permet de contrôler finement la métrique de manière à influencer les entrées de la table de routage. EIGRP est alors capable de répartir la charge de trafic sur des liaisons à coûts inégaux.
Cet exercice est l’occasion d’observer les relations de voisinages de voisins OSPF, de comprendre et de prédire le comportement des routeurs OSPF dans une élection DR/BDR.
On trouvera ici la documentation d’un exercice de lab de routage OSPFv2/OSPFv3 multi-zone en Cisco IOS.
On trouvera ici un exercice de laboratoire sur la configuration d’OSPF dans une topologie simple.
Ce chapitre reprend les différentes procédures que le protocole de routage dynamique OSPF met en oeuvre pour maintenir les informations de routage.
Ce chapitre sur OSPF expose les critères d’élection du DR et du BDR pour un segment. Le premier critère est celui d’une priorité la plus élevée parmi les interfaces qui participent à l’élection. En cas d’ex-aequo, c’est le routeur qui dispose de l’ID OSPF le plus élevé qui remporte l’élection. La manière dont se construit le Router ID OSPF relève d’une autre procédure.
Les interfaces OSPF voisines peuvent rencontrer sept états et correspondent à deux moments : d’une part, la découverte des voisins (DOWN, INIT, TWO-WAY) et, d’autre part, la découverte des routes (EXSTART, EXCHANGE, LOADING, FULL).
Pour construire ses routes, les routeurs OSPF entretiennent des relations de voisinage et s’échangent toute une série de messages qui sont décrits dans ce chapitre : Hello, Database Description packet (DBD), Link-state request (LSR), Link-state update (LSU) et Link-state acknowledgment (LSAck).
Dans ce second article, on décrit les étapes de configuration d’OSPFv2 et OSPFv3 en Cisco IOS ainsi que la configuration de la métrique OSPF.
Le protocole OSPF (Open Shortest Path First) a été développé par l’IETF pour répondre au besoin d’un protocole de routage intérieur (IGP, Internal Gateway Protocol) dans la pile des protocoles TCP/IP, non-propriétaire et hautement fonctionnel. La version actuelle d’OSPFv2 est décrite dans le RFC 2328 (1998). Une version 3 est définie dans le RFC 5340 qui permet l’utilisation de OSPF dans un réseau IPv6 (2008) et même d’embarquer des routes IPv4. OSPF est un protocole de ro...
Cet exercice pratique consiste à déployer la connectivité IPv4 et IPv6 de deux sites privés avec du NAT, du DNS et une solution DHCP Relay qui centralise le service d’attribution d’adresses IPv6.
Cet exercice pratique vise à configurer le routeur Cisco d’une toute petite infrastructure qui pourrait ressembler à un bureau distant, une situation domestique, une très petite entreprise. Il s’agit de déployer tous les services que l’on peut utiliser nativement avec une passerelle domestique bon marché : auto-configuration IPv6, DHCP, DNS, NAT44. Il ne manque que le pare-feu.
Ce chapitre présente d’abord les principes de base des ACLs Ciso IOS. Ensuite, quelques exemples de mise en oeuvre en IPv4 démontrent leur usage. Enfin, le document se termine par un exposé sur les ACLs IPv6 en Cisco IOS.
Le protocole et le système DNS permet de résoudre des noms en adresses IP. DNS est une sorte de service mondial de correspondance entre des noms et des adresses IP. DNS utilise principalement le port UDP 53. Plus précisément, DNS est un système d’interrogation de registre mondial.
Les solutions de gestion des adresses a été considérablement améliorée en IPv6. Ce chapitre expose les principes de Neigbor Discovery, les mécanismes d’auto-configuration automatique sans état en IPv6, les messages ICMPv6 type 134 Router Advertisements et le protocole DHCPv6 notamment à partir de l’environnement Cisco IOS.
Dans ce hapitre on parlera du Inside Source NAT44 (Statique, Pool et PAT) et de son implémentation en Cisco IOS.
On trouvera dans ce document des exemples de configuration du routage statique avec un routeur Cisco IOS.
Dans ce chapitre, on tentera d’identifier et de décrire les composants matériels et logiciels des routeurs Cisco Systems.
Ce document est une initiation à la méthode de configuration des commutateurs et des routeurs Cisco. On y évoque la hiérarchie des modes de configuration utilisateur, privilégié et de configuration. On y énonce les facilités de configuration, d’aide, de raccourcis clavier et différentes astuces.
Ce chapitre explique comment se connecter à un routeur Cisco en console physique et comment reprendre la main sur un routeur dont a perdu le mot de passe via un password recovery. On y trouvera enfin un descriptif sur la notion de registre de configuration d’un routeur Cisco.
Ce chapitre explique comment se connecter à un commutateur Cisco en console physique et comment reprendre la main sur un commutateur dont a perdu le mot de passe via un password recovery.
Pour se rapprocher d’une expérience moderne des interfaces de configuration des produits Cisco Systems, on conseillera volontiers le projet Open Source GNS3 comme meilleur rapport qualité/prix pour se préparer aux examens de certification et à la pratique des systèmes Cisco. Voici un guide d’installation et de configuration.
Cisco IOS (Internetwork Operating System) est une famille de logiciels (système d’exploitation) utilisée sur la plupart des routeurs et commutateurs Cisco Sytems.